
COP 4710: Database Systems (Chapter 5) Page 1 Dr. Mark Llewellyn ©

COP 4710: Database Systems

Fall 2013

Chapter 5 – Introduction To SQL – Part 1

Department Of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop4710/fall2013

COP 4710: Database Systems (Chapter 5) Page 2 Dr. Mark Llewellyn ©

The Physical Design Stage of SDLC

Purpose –programming, testing,

training, installation, documenting

Deliverable – operational programs,

documentation, training materials,

program/data structures

Database activity –

physical database design and

database implementation

Project Identification

and Selection

Project Initiation

and Planning

Analysis

Physical Design

Implementation

Maintenance

Logical Design

Implementation

Physical Design

COP 4710: Database Systems (Chapter 5) Page 3 Dr. Mark Llewellyn ©

SQL Overview
• SQL ≡ Structured Query Language.

• SQL is pronounced S-Q-L. Although you will also
undoubtedly hear it pronounced as sequel.

• The standard for relational database management
systems (RDBMS).

• SQL: 2007 Standards – Purpose:

– Specify syntax/semantics for data definition and manipulation.

– Define data structures.

– Enable portability.

– Specify minimal (level 1) and complete (level 2) standards.

– Allow for later growth/enhancement to standard.

• SQL: 20XX Standard

COP 4710: Database Systems (Chapter 5) Page 4 Dr. Mark Llewellyn ©

Benefits of a Standardized Relational

Language

• Reduced training costs

• Productivity

• Application portability

• Application longevity

• Reduced dependence on a single vendor

• Cross-system communication

COP 4710: Database Systems (Chapter 5) Page 5 Dr. Mark Llewellyn ©

The SQL Environment
• Catalog

– A set of schemas that constitute the description of a database.

• Schema
– The structure that contains descriptions of objects created by a

user (base tables, views, constraints).

• Data Definition Language (DDL)
– Commands that define a database, including creating, altering,

and dropping tables and establishing constraints.

• Data Manipulation Language (DML)
– Commands that maintain and query a database.

• Data Control Language (DCL)
– Commands that control a database, including administering

privileges and committing data.

COP 4710: Database Systems (Chapter 5) Page 6 Dr. Mark Llewellyn ©

A simplified schematic of a typical SQL environment, as described by

the SQL:20xx standard

Developmental

database

Production

database

COP 4710: Database Systems (Chapter 5) Page 7 Dr. Mark Llewellyn ©

Some SQL Data Types (from Oracle 11g)

• String types
– CHAR(n) – fixed-length character data, n characters long

Maximum length = 2000 bytes

– VARCHAR2(n) – variable length character data, maximum 4000
bytes

– LONG – variable-length character data, up to 4GB. Maximum 1
per table

• Numeric types
– NUMBER(p,q) – general purpose numeric data type

– INTEGER(p) – signed integer, p digits wide

– FLOAT(p) – floating point in scientific notation with p binary
digits precision

• Date/time type
– DATE – fixed-length date/time in dd-mm-yy form

COP 4710: Database Systems (Chapter 5) Page 8 Dr. Mark Llewellyn ©

DDL, DML, DCL, and the database development process

COP 4710: Database Systems (Chapter 5) Page 9 Dr. Mark Llewellyn ©

Some Common SQL DDL Commands

COP 4710: Database Systems (Chapter 5) Page 10 Dr. Mark Llewellyn ©

SQL Database Definition – Basic DDL Commands

• Data Definition Language (DDL)

• Major CREATE statements:

– CREATE SCHEMA – defines a portion of the database

owned by a particular user.

– CREATE TABLE – defines a table and its columns.

– CREATE VIEW – defines a logical table from one or

more views.

• Other CREATE statements: CHARACTER SET,

COLLATION, TRANSLATION, ASSERTION,

DOMAIN.

COP 4710: Database Systems (Chapter 5) Page 11 Dr. Mark Llewellyn ©

Table Creation

General syntax for CREATE TABLE

Steps in table creation:

1. Identify data types for

attributes

2. Identify columns that can

and cannot be null

3. Identify columns that must

be unique (candidate keys)

4. Identify primary key-

foreign key mates

5. Determine default values

6. Identify constraints on

columns (domain

specifications)

7. Create the table and

associated indexes

COP 4710: Database Systems (Chapter 5) Page 12 Dr. Mark Llewellyn ©

The following slides create tables for

this enterprise data model

COP 4710: Database Systems (Chapter 5) Page 13 Dr. Mark Llewellyn ©

Examples of SQL database definition commands

A foreign key

constraint

Two different

techniques for defining

the primary key

COP 4710: Database Systems (Chapter 5) Page 14 Dr. Mark Llewellyn ©

A domain (column)

constraint

A composite

primary key

A default attribute

value

Unique creates an

index

Referential integrity

constraint handler

Defines the file

type for the table

A table constraint

COP 4710: Database Systems (Chapter 5) Page 15 Dr. Mark Llewellyn ©

A domain

constraint

COP 4710: Database Systems (Chapter 5) Page 16 Dr. Mark Llewellyn ©

Data Integrity Controls

• Referential integrity – constraint that ensures

that foreign key values of a table must match

primary key values of a related table in 1:M

relationships.

• Restricting:

– Deletes of primary records.

– Updates of primary records.

– Inserts of dependent records.

COP 4710: Database Systems (Chapter 5) Page 17 Dr. Mark Llewellyn ©

Relational

integrity is

enforced via

the primary-

key to foreign-

key match

COP 4710: Database Systems (Chapter 5) Page 18 Dr. Mark Llewellyn ©

Data Integrity Controls
• To illustrate how referential integrity is enforced by the DBMS,

consider the following case using the sample database

illustrated in these notes:

– There is an invoice number 1008 in the INVOICE table.

– This invoice number is referenced by three different rows in

the LINE table.

– The following few slides illustrate the initial configuration of

the data in these two tables, followed by an update to the

INVOICE table that sets invoice number 1008 to 1010.

Notice that the subsequent view of the LINE table that the

invoice number 1008 has been updated to 1010. This is

because of the ON UPDATE CASCADE constraint on the

INVOICE table (see page 14).

COP 4710: Database Systems (Chapter 5) Page 19 Dr. Mark Llewellyn ©

Before shot of INVOICE

COP 4710: Database Systems (Chapter 5) Page 20 Dr. Mark Llewellyn ©

Before shot of LINE

COP 4710: Database Systems (Chapter 5) Page 21 Dr. Mark Llewellyn ©

Execute UPDATE to INVOICE

COP 4710: Database Systems (Chapter 5) Page 22 Dr. Mark Llewellyn ©

Notice that the INV_NUMBER 1008

has been updated to 1010 in the

INVOICE table as the result of the

direct update command issued

against the INVOICE table (see

previous slide).

After shot of INVOICE

COP 4710: Database Systems (Chapter 5) Page 23 Dr. Mark Llewellyn ©

Notice that the INV_NUMBER 1008

has been updated to 1010 in the LINE

table as well as a result of the ON

UPDATE CASCADE constraint that

was in effect on the INVOICE table

when the update to that table

occurred.

After shot of INVOICE

COP 4710: Database Systems (Chapter 5) Page 24 Dr. Mark Llewellyn ©

Data Integrity Controls
• The previous few slides illustrated how the ON UPDATE

CASCADE constraint was used to enforce referential integrity

in the database.

• The following example is similar, except that it uses the ON

DELETE CASCADE constraint:

– There is an invoice number 1008 in the INVOICE table.

– This invoice number is referenced by three different rows in the LINE

table.

– The following few slides illustrate the initial configuration of the data in

these two tables, followed by a deletion to the LINE table that removes

rows belonging to invoice number 1008.

• Note that this deletion is occurring in the foreign key table, i.e.,

where INV_NUMBER is a foreign key.

COP 4710: Database Systems (Chapter 5) Page 25 Dr. Mark Llewellyn ©

Same table definition

commands as before

except that the referential

integrity constraint is to

be enforced with the ON

DELETE CASCADE

clause.

Table definitions

COP 4710: Database Systems (Chapter 5) Page 26 Dr. Mark Llewellyn ©

Before shot of INVOICE

COP 4710: Database Systems (Chapter 5) Page 27 Dr. Mark Llewellyn ©

Before shot of LINE

COP 4710: Database Systems (Chapter 5) Page 28 Dr. Mark Llewellyn ©

Execute delete

COP 4710: Database Systems (Chapter 5) Page 29 Dr. Mark Llewellyn ©

Notice that all rows involving invoice

number 1008 have been deleted from

the LINE table

After shot of LINE

COP 4710: Database Systems (Chapter 5) Page 30 Dr. Mark Llewellyn ©

Why is the inv_number 1008 still in

the INVOICE table after the deletion in

the LINE table?

MySQL does not actually implement

the ON DELETE CASCADE

constraint from the FK table into the

PK table! MySQL only supports the

ON DELETE CASCADE constraint

from the PK table to the FK table. It

is only there to allow portability to

other DBMS. SQL Server and Oracle

systems do support the ON DELETE

CASCADE constraint. Oracle does

not support ON UPDATE CASCADE,

but SQL Server does.

Oracle supports the SET NULL, SQL

Server does not.

After shot of INVOICE

COP 4710: Database Systems (Chapter 5) Page 31 Dr. Mark Llewellyn ©

Data Integrity Controls
• One last look…this time deleting the invoice number in the

table in which it is the primary key (INVOICE). Note that the

ON UPDATE CASCADE clause will cascade the update into

the foreign key table.

COP 4710: Database Systems (Chapter 5) Page 32 Dr. Mark Llewellyn ©

Before shot of LINE

COP 4710: Database Systems (Chapter 5) Page 33 Dr. Mark Llewellyn ©

Before shot of INVOICE

COP 4710: Database Systems (Chapter 5) Page 34 Dr. Mark Llewellyn ©

Execute delete in PK table

COP 4710: Database Systems (Chapter 5) Page 35 Dr. Mark Llewellyn ©

After shot of INVOICE

COP 4710: Database Systems (Chapter 5) Page 36 Dr. Mark Llewellyn ©

After shot of LINE

COP 4710: Database Systems (Chapter 5) Page 37 Dr. Mark Llewellyn ©

Additional DDL Commands

• Table structure can always be modified after table creation

occurs. It may not occur very often if the designer has done a

good job, but some structural changes might be inevitable over

the long haul.

• SQL DDL commands allow for attributes to be added, deleted, or

rearranged in order within a table.

• Additional DDL commands allow tables to be cloned (copied) in

whole or in part as well as deleted from a schema.

• The next few pages illustrate some of these additional DDL

commands.

COP 4710: Database Systems (Chapter 5) Page 38 Dr. Mark Llewellyn ©

Changing and Removing Tables

• ALTER TABLE command is primarily used for changing

column specifications. It has three options available: ADD,

MODIFY, and DROP. The syntax is shown below:

ALTER TABLE tablename {ADD | MODIFY}

(columnname datatype [{ADD | MODIFY}

columnname datatype]);

• The ALTER TABLE command can also be used to add table

constraints. In this case the syntax is:

ALTER TABLE tablename ADD constraint

[ADD constraint];

COP 4710: Database Systems (Chapter 5) Page 39 Dr. Mark Llewellyn ©

Changing and Removing Tables

• To remove a column or constraint the syntax is:

ALTER TABLE tablename DROP

{PRIMARY KEY |COLUMN columnname |

CONSTRAINT constraintname];

• Changing a column’s data type is also done with the ALTER

TABLE command. In this case the syntax becomes:

ALTER TABLE tablename MODIFY

(columnname datatype);

• Note that many RDBMSs will not allow columns to be deleted or

have their datatypes modified unless the column is empty

(contains no data). Also note that a column’s datatype can be

modified if it contains data but the modification does not change

the underlying data type, e.g., decimal(7,2) to decimal(10,2).

COP 4710: Database Systems (Chapter 5) Page 40 Dr. Mark Llewellyn ©

Creating SQL Indices

• Indices are used to improve the efficiency of searches and to
avoid duplicate column values.

• The declaration of the primary key in any table in SQL will
automatically cause the creation of a unique index on the key
attributes.

• Even with the automatically created indices, you often need
additional indices. This is done with the CREATE INDEX
command in SQL. The syntax is:

CREATE [UNIQUE} INDEX indexname ON

tablename (column1 | column2]);

• If you wanted to create an index on the attribute P_INDATE in
the PRODUCT table in our example database, the following
command would create an index named P_INDATE_INDEX:
CREATE INDEX P_INDATE_INDEX ON PRODUCT (P_INDATE);

COP 4710: Database Systems (Chapter 5) Page 41 Dr. Mark Llewellyn ©

SQL DML Commands

• SQL DML commands allow for manipulation of the data in
tables within a schema.

• The table on the next slide list the basic SQL DML commands
and special operators that can be used in conjunction with the
DML commands.

• Often the first DML command you will need is that of INSERT,
as once you’ve specified the definition of your table, you will
then need to populate the table with data before you can query
the table.

• The page after the table, begins with a look at the INSERT
command.

COP 4710: Database Systems (Chapter 5) Page 42 Dr. Mark Llewellyn ©

Some Common SQL DML Commands

COP 4710: Database Systems (Chapter 5) Page 43 Dr. Mark Llewellyn ©

Insert Command
• SQL requires the use of the INSERT command to enter data into a

table.

• While there are several different variations of the INSERT
command, the syntax for the most common form is:

INSERT INTO tablename VALUES

(value1, value2, . . . ,valueN);

• The restrictions on the INSERT command are as follows:
– Character string and date value must be entered between apostrophes (‘).

– Numerical data is not enclosed in apostrophes.

– Attribute entries are separated by commas.

– A value is required for each column in the table. Null and default values are
still separated by commas.

– Explicit null values are entered as NULL.

• Example:

INSERT INTO PRODUCT VALUES (‘BRT-345”, ‘Titanium

drill bit’,’2013-10-03’,75, 10, 4.50,0.006, NULL);

COP 4710: Database Systems (Chapter 5) Page 44 Dr. Mark Llewellyn ©

Before shot of a restriction on

the Product table

COP 4710: Database Systems (Chapter 5) Page 45 Dr. Mark Llewellyn ©

Perform the insert command

COP 4710: Database Systems (Chapter 5) Page 46 Dr. Mark Llewellyn ©

After shot showing the updated

Product table with the newly

inserted row.

COP 4710: Database Systems (Chapter 5) Page 47 Dr. Mark Llewellyn ©

Delete Statement

• Removes rows from a table.

• Syntax:

DELETE FROM tablename

[WHERE conditionlist];

• To delete all rows in a table, simply provide no

WHERE clause.

• To delete only certain rows in a table, provide a

WHERE clause.

• The following few slides illustrate some of the

variations of the DELETE command.

COP 4710: Database Systems (Chapter 5) Page 48 Dr. Mark Llewellyn ©

Initial Product table instance

COP 4710: Database Systems (Chapter 5) Page 49 Dr. Mark Llewellyn ©

Delete command with a condition

COP 4710: Database Systems (Chapter 5) Page 50 Dr. Mark Llewellyn ©

Product table after deletion

Note row containing P_CODE = 1558-

QW1 is gone.

COP 4710: Database Systems (Chapter 5) Page 51 Dr. Mark Llewellyn ©

Table P initial instance

(Table P is a copy of table Product but it

contains no restrictions. (See next slide.)

COP 4710: Database Systems (Chapter 5) Page 52 Dr. Mark Llewellyn ©

Table P definition

COP 4710: Database Systems (Chapter 5) Page 53 Dr. Mark Llewellyn ©

An unrestricted delete command against table P

COP 4710: Database Systems (Chapter 5) Page 54 Dr. Mark Llewellyn ©

An unrestricted delete command against table P

COP 4710: Database Systems (Chapter 5) Page 55 Dr. Mark Llewellyn ©

After shot of P table. Note all rows have been deleted.

COP 4710: Database Systems (Chapter 5) Page 56 Dr. Mark Llewellyn ©

Update Statement

• Modifies data in existing rows of a table.

• General syntax is:

UPDATE tablename

SET columnname = expression

[,columnname = expression]

WHERE conditionlist;

• Without a WHERE clause, the update is applied to

all rows of a table.

• The following few slides illustrate the UPDATE

command.

COP 4710: Database Systems (Chapter 5) Page 57 Dr. Mark Llewellyn ©

Before shot of PRODUCT table

COP 4710: Database Systems (Chapter 5) Page 58 Dr. Mark Llewellyn ©

A restricted UPDATE command

COP 4710: Database Systems (Chapter 5) Page 59 Dr. Mark Llewellyn ©

After shot of PRODUCT table after

executing UPDATE command

COP 4710: Database Systems (Chapter 5) Page 60 Dr. Mark Llewellyn ©

An unrestricted UPDATE command. The

update will be applied to all rows of the

operand table.

COP 4710: Database Systems (Chapter 5) Page 61 Dr. Mark Llewellyn ©

After shot of the PRODUCT table after

executing the unrestricted UPDATE

command. Note that all rows have the

P_MIN value increased by 40.

COP 4710: Database Systems (Chapter 5) Page 62 Dr. Mark Llewellyn ©

SELECT Statement

• Used for queries on single or multiple tables.

• Clauses of the SELECT statement:
– SELECT

• List the columns (and expressions) that should be returned from the query

– FROM

• Indicate the table(s) or view(s) from which data will be obtained

– WHERE

• Indicate the conditions under which a row will be included in the result

– GROUP BY

• Indicate categorization of results

– HAVING

• Indicate the conditions under which a category (group) will be included

– ORDER BY

• Sorts the result according to specified criteria

COP 4710: Database Systems (Chapter 5) Page 63 Dr. Mark Llewellyn ©

SQL statement

processing order

COP 4710: Database Systems (Chapter 5) Page 64 Dr. Mark Llewellyn ©

SELECT Example

COP 4710: Database Systems (Chapter 5) Page 65 Dr. Mark Llewellyn ©

SELECT Examples

• Using an instance of the database shown on the

previous page, the following pages illustrate

some basic SELECT operations and their results

using MySQL.

• The syntax for the basic SELECT command is:

SELECT columnlist

FROM tablelist

[WHERE conditionlist];

COP 4710: Database Systems (Chapter 5) Page 66 Dr. Mark Llewellyn ©

Query: List all attributes of all products.

This is the current instance of the product

table.
Basic query

COP 4710: Database Systems (Chapter 5) Page 67 Dr. Mark Llewellyn ©

SELECT Example

• Find products with standard price less than $275

SELECT PRODUCT_NAME, STANDARD_PRICE

FROM PRODUCT_V

WHERE STANDARD_PRICE < 275;

Query: List the product description, date,

and price of products with a vendor code of

21344.
Basic query with

conditional

restriction

COP 4710: Database Systems (Chapter 5) Page 68 Dr. Mark Llewellyn ©

Query: List the product description, date,

and price of products with a vendor code

which is not equal to 21344. Rows with null

v_code values are not included in the result.

Basic query with

conditional

restriction

COP 4710: Database Systems (Chapter 5) Page 69 Dr. Mark Llewellyn ©

Query: List the product description, date,

and price of products with a vendor code

which is equal to 21344 and p_price >=

$10.00. Rows with null v_code values are

not included in the result.

Basic query with

compound

conditional

restriction

COP 4710: Database Systems (Chapter 5) Page 70 Dr. Mark Llewellyn ©

Query: List the product description, date,

and price of products with a vendor code

which is equal to 24288 or p_price < $50.00

and p_indate is after January 15, 2012.

Rows with null v_code values may be

included in the result.

Basic query with

compound

conditional

restriction

COP 4710: Database Systems (Chapter 5) Page 71 Dr. Mark Llewellyn ©

Query: List the product description, date, and

price of products where the inventory stock

dates occur on or after January 20, 2012.

Basic query using an

operation on a date field.

COP 4710: Database Systems (Chapter 5) Page 72 Dr. Mark Llewellyn ©

Query: List all attributes of products for

product that do not have v_code = 21344.

Basic query using a logical

NOT operator.

COP 4710: Database Systems (Chapter 5) Page 73 Dr. Mark Llewellyn ©

Query: List all attributes of products for

product that do not have v_code = 21344.

Same query as previous

page but using not equal

operator.

COP 4710: Database Systems (Chapter 5) Page 74 Dr. Mark Llewellyn ©

Query: List the product description, date,

and price of products along with the total

value of the products currently in inventory.

Basic query using a

computed column

COP 4710: Database Systems (Chapter 5) Page 75 Dr. Mark Llewellyn ©

Query: List the product description, date,

and price of products along with the total

value of the products currently in inventory.

Same query as previous page but adding

an alias for the computed column.

COP 4710: Database Systems (Chapter 5) Page 76 Dr. Mark Llewellyn ©

Special Operators

• ANSI-standard SLQ allows the use of special operators in

conjunction with the WHERE clause.

• These special operators include:

– BETWEEN: used to check whether an attribute value is within

a range.

– IS NULL: used to check whether an attribute value is null.

– LIKE: used to check whether an attribute value matches a

given string pattern.

– IN: used to check whether an attribute value matches any

value within a value list.

– EXISTS: used to check whether a sub-query returns any rows.

• The examples on the following few pages illustrate these special

operators.

COP 4710: Database Systems (Chapter 5) Page 77 Dr. Mark Llewellyn ©

Query: List the details of products which have

prices between $30.00 and $100.00.

Query using the special operator

BETWEEN.

COP 4710: Database Systems (Chapter 5) Page 78 Dr. Mark Llewellyn ©

Special Operators – IS NULL

• Note that SQL uses the special IS NULL operator to test for nulls.

• You cannot simply enter a condition such as “v-code = null”. The

reason being that technically, null is not a “value” the way the

number 0 or the blank space is, instead, a NULL is a special

property of an attribute that represents precisely the absence of

any value.

COP 4710: Database Systems (Chapter 5) Page 79 Dr. Mark Llewellyn ©

select p_code, p_descript, p_indate

from product

where p_indate is null;

select p_code, p_descript, v_code

from product

where v_code is null;

Query: List the details of products which do not

have a v_code assigned.

Query using the special operator

IS NULL.

COP 4710: Database Systems (Chapter 5) Page 80 Dr. Mark Llewellyn ©

select p_code, p_descript, p_indate

from product

where p_indate is null;

select p_code, p_descript, v_code

from product

where v_code is null;

Query: List the details of products with a null

indate.

Query using the special operator

IS NULL.

COP 4710: Database Systems (Chapter 5) Page 81 Dr. Mark Llewellyn ©

Special Operators - LIKE

• The LIKE special operator is used in conjunction with wildcards

to find patterns within string attributes.

• ANSI-standard SQL allows you to use the percent sign (%), and

underscore (_) wildcard characters to make matches when the

entire string is not known.

• Examples:

– % means any and all following or preceding characters are eligible. For

example:

• “M%” includes: Mark, Mary, Month, May, March, M1234, and M

• “Ma%” includes Mark, Mary, March, Mall

• “%k” includes Mark, ark, dark, mark

– _ means any one character may be substituted for the underscore. For

example:

• “_07-823-2369” includes: 407-823-2369, 507,823-2369, a07-823-2369

• “_07-_23-123_” includes: 407-823-1234, a07-b23-123r, 007-023-1239

COP 4710: Database Systems (Chapter 5) Page 82 Dr. Mark Llewellyn ©

select p_code, p_descript, p_indate

from product

where p_descript LIKE “%SAW BLADE%”;

select p_code, p_descript, v_code

from product

where p_descript LIKE “%saw blade%”;

Query: List the details of products which

contain the term “saw blade”.

Query using the special operator

LIKE.

COP 4710: Database Systems (Chapter 5) Page 83 Dr. Mark Llewellyn ©

select p_code, p_descript, p_indate

from product

where p_descript LIKE “%SAW BLADE%”;

select p_code, p_descript, v_code

from product

where p_descript LIKE “%saw blade%”;

Query: List the details of products which

contain the term “saw blade”.

Query using the special operator

LIKE.

Note: MySQL does not use case sensitivity with

the LIKE operator. However, Oracle systems do

and provide a special UPPER operator to

convert both table and query character entries

to upper case. The conversion does not affect

the actual data in the tables, only the

processing. The syntax of the WHERE clause

would then be: UPPER(p_descript) LIKE ‘%saw

blade%’;.

COP 4710: Database Systems (Chapter 5) Page 84 Dr. Mark Llewellyn ©

Special Operators - IN

• Many queries that would require the use of the logical OR

operator can be more easily handled with the use of the special

operator IN.

• Consider the following case:

SELECT * FROM PRODUCT

WHERE V_CODE = 21344 OR V_CODE= 24288;

• Using the IN operator this query becomes:

SELECT * FROM PRODUCT

WHERE V_CODE IN (21344, 24288);

• The IN operator uses a value list. All of the values in the list

must be of the same data type. Each of the values in the value

list is compared to the attribute. If any of the values match the

attribute, the row is selected.

COP 4710: Database Systems (Chapter 5) Page 85 Dr. Mark Llewellyn ©

SELECT * FROM PRODUCT

WHERE V_CODE IN (21344,

24288);

Query: List the details of products which have a

vendor code of 21344 or 24288.

Query using the special operator

IN.

COP 4710: Database Systems (Chapter 5) Page 86 Dr. Mark Llewellyn ©

Special Operators - EXISTS

• The EXISTS special operator can be used whenever there is a

requirement to execute a command based on the result of another

query.

• The EXISTS special operator is used almost exclusive with

subqueries, so we will examine it in more detail later (as is also true

with the special IN operator we just saw).

• If a subquery returns any rows, run the main query; otherwise, do not.

• Consider the following case:

SELECT * FROM VENDOR

WHERE EXISTS (SELECT * FROM PRODUCT

WHERE P_QOH <= P_MIN);

• In this case the EXISTS operator is used to list all the vendors, but

only if there are products with the quantity on hand is less that the

threshold value p_min.

COP 4710: Database Systems (Chapter 5) Page 87 Dr. Mark Llewellyn ©

Query: List the details of vendors but only for

those products with QOH < P_MIN.

Query using the special operator

EXISTS.

COP 4710: Database Systems (Chapter 5) Page 88 Dr. Mark Llewellyn ©

Query: List the details of vendors but only for

those products with QOH >= P_MIN.

Query using the special operator

EXISTS.

Result lists all vendors since current instance

has all products with qoh >= threshold

minimum.

COP 4710: Database Systems (Chapter 5) Page 89 Dr. Mark Llewellyn ©

Additional Select Query Keywords

• One of the most important advantages of SQL is its ability to

produce complex free-form queries.

• The logical operators introduced earlier to update table contents

work just as well in the query environment. In addition, SQL

provides useful functions that count, find minimum and

maximum values, calculate averages, and so on.

• Better yet, SQL allows the user to limit queries to only those

entries that have no duplicates, or entries whose duplicates can be

grouped together.

• ANSI-SQL also includes additional clauses for the SELECT

command that, while provide no additional expressive power,

allow the user to format query results in useful ways.

COP 4710: Database Systems (Chapter 5) Page 90 Dr. Mark Llewellyn ©

ORDER BY Clause

• The ORDER BY clause is especially useful when the listing order

of the results is important to you.

• The syntax is:

SELECT columnlist

FROM tablelist

[WHERE conditionlist]

[ORDER BY columnlist [ASC | DESC]];

COP 4710: Database Systems (Chapter 5) Page 91 Dr. Mark Llewellyn ©

Query: List the product description, date, and

price of products along with the total value of

the products currently in inventory and sort the

output in ascending order of p_price..

Same query as previous page but adding

an ORDER BY clause to sort the output.

COP 4710: Database Systems (Chapter 5) Page 92 Dr. Mark Llewellyn ©

Query: List the product description, date, and

price of products along with the total value of

the products currently in inventory and sort the

output in descending order of p_price..

Same query as previous page but adding

an ORDER BY clause to sort the output.

COP 4710: Database Systems (Chapter 5) Page 93 Dr. Mark Llewellyn ©

Query: Produce a phone directory for

employees ordered by lastname, then first

name, then initial.

Query using the ORDER BY

clause. Cascading order

sequence.

COP 4710: Database Systems (Chapter 5) Page 94 Dr. Mark Llewellyn ©

Listing Unique Values

• By default, SQL lists all values as the result of a SELECT

command.

• While this is normally the result that you would desire, there may

be cases where the output listing would contain many duplicate

values, which would tend to obscure the true result.

• To remove duplicate values from the results of a SELECT

command, the DISTINCT clause will remove duplicate values

from the results.

• The syntax is:

SELECT [DISTINCT] columnname

COP 4710: Database Systems (Chapter 5) Page 95 Dr. Mark Llewellyn ©

Query: List all the vendor codes currently

present in the product table.

Query without using the

DISTINCT clause.

COP 4710: Database Systems (Chapter 5) Page 96 Dr. Mark Llewellyn ©

Query: List all the vendor codes currently

present in the product table.

Query using the DISTINCT

clause.

COP 4710: Database Systems (Chapter 5) Page 97 Dr. Mark Llewellyn ©

Aggregate Functions In SQL

• SQL can perform various mathematical summaries for you, such

as counting the number of rows that contain a specified condition,

finding the minimum or maximum values for a specified

attributes, summing the values in a specified columns, and

averaging the values in a specified column.

• The following slide illustrates the basic SQL aggregate functions.

NOTE: SQL aggregate operators can only be used in the

column list of a SELECT or HAVING clause. It is not possible

to use an SQL aggregate operator on the right side of a

comparison operator in the WHERE clause. See the example

on page 103.

COP 4710: Database Systems (Chapter 5) Page 98 Dr. Mark Llewellyn ©

Aggregate Functions In SQL

Function Output

COUNT The number of rows containing non-null values.

MIN The minimum attribute value encountered in the specified

column.

MAX The maximum attribute value encountered in the specified

column.

SUM The sum of all values for the specified column.

AVG The arithmetic mean (average) for the specified column.

COP 4710: Database Systems (Chapter 5) Page 99 Dr. Mark Llewellyn ©

Query: Count the number of unique vendor

codes currently present in the product table.

Query using the COUNT

aggregate operator.

COP 4710: Database Systems (Chapter 5) Page 100 Dr. Mark Llewellyn ©

Query: Count the number of unique vendor

codes currently present in the product table who

supply a product that costs less than $10.

Query using the COUNT

aggregate operator.

COP 4710: Database Systems (Chapter 5) Page 101 Dr. Mark Llewellyn ©

Query: Count the number of products that cost

less than $10.

Query using the COUNT

aggregate operator.

This use of count(*) simply counts the number

of rows in the specified table that satisfy the

condition.

COP 4710: Database Systems (Chapter 5) Page 102 Dr. Mark Llewellyn ©

Query: Count the number of products that cost

less than $10.

Query using the COUNT

aggregate function.

This use of count(*) simply counts the number

of rows in the specified table that satisfy the

condition. If there is no condition, as in this

case, then all rows in the table are counted.

COP 4710: Database Systems (Chapter 5) Page 103 Dr. Mark Llewellyn ©

Query: Which product has the highest price?

Query using the MAX aggregate

function.

NOTE: This is an incorrect use of an SQL

aggregate function. The correct use is shown in

the next slide.

COP 4710: Database Systems (Chapter 5) Page 104 Dr. Mark Llewellyn ©

Query: Which product has the highest price?

Query using the MAX aggregate

function.

NOTE: This is the correct use of an SQL

aggregate function.

COP 4710: Database Systems (Chapter 5) Page 105 Dr. Mark Llewellyn ©

Query: Which product has the lowest price?

Query using the MIN aggregate

function.

COP 4710: Database Systems (Chapter 5) Page 106 Dr. Mark Llewellyn ©

Query: What is the total amount currently owed

to the company by all customers?

Query using the SUM aggregate

function.

COP 4710: Database Systems (Chapter 5) Page 107 Dr. Mark Llewellyn ©

Query: What is the total value of the current

inventory (cost of all items currently on hand)?

Query using the SUM aggregate

function.

NOTE: This query illustrates that the aggregate

functions can also be applied to expressions.

COP 4710: Database Systems (Chapter 5) Page 108 Dr. Mark Llewellyn ©

Query: What is the current average price of all

products?

Query using the AVG aggregate

function.

COP 4710: Database Systems (Chapter 5) Page 109 Dr. Mark Llewellyn ©

Query: List details of those products which cost

more than the average price of a product.

Query using the AVG aggregate

function.

COP 4710: Database Systems (Chapter 5) Page 110 Dr. Mark Llewellyn ©

Grouping Data

• In the previous few examples, the aggregate functions

summarized data across all rows in the given tables. Sometimes,

however, you do not want to treat the entire table as a single

collection of data for summarizing. Rows can be grouped into

smaller collections quickly and easily using the GROUP BY

clause within the SELECT command.

• The aggregate functions will then summarize the data within each

smaller collection. The syntax is:

SELECT columnlist

FROM tablelist

[WHERE conditionlist]

[GROUP BY columnlist]

[HAVING conditionlist]

[ORDER BY columnlist [ASC | DESC]];

COP 4710: Database Systems (Chapter 5) Page 111 Dr. Mark Llewellyn ©

Grouping Data
• The GROUP BY clause is only valid when used in conjunction with one of the

SQL aggregate functions. You generate a “not a GROUP BY expression”

error otherwise. (Note that not all DBMSs support this, for example, MySQL

will allow a GROUP BY clause without an aggregate function, but this is not

standard SQL).

• The GROUP BY clause is generally used when you have attribute columns

combined with aggregate functions in the SELECT statement.

• For example, you might want to determine minimum price for each of the

different sales codes that you have, rather than the minimum price for all

products. You would need to group the data by sales code, then determine the

minimum price within each sales code (smaller grouping).

• This is illustrated in the next slide.

COP 4710: Database Systems (Chapter 5) Page 112 Dr. Mark Llewellyn ©

Query: List the minimum price for products from

each vendor.

Query using the GROUP BY

clause.

COP 4710: Database Systems (Chapter 5) Page 113 Dr. Mark Llewellyn ©

Query: How many products are supplied by

each vendor?

Query using the GROUP BY

clause.

COP 4710: Database Systems (Chapter 5) Page 114 Dr. Mark Llewellyn ©

Grouping Data – The HAVING Clause
• A particularly useful feature of the GROUP BY clause is the HAVING clause.

• The HAVING clause operates very much list the WHERE clause in the

SELECT clause. However, the WHERE clause applies to columns and

expressions for individual rows, while the HAVING clause is applied only to

the output of the GROUP BY clause.

• The HAVING clause can only be used in conjunction with the GROUP BY

clause. It cannot stand alone.

• For example, suppose that you want to generate a listing of the number of

products inventory supplied by each vendor. However, this time you want to

limit the listing to products whose prices average less than $10. The first part

of this queries requirements will be satisfied using the GROUP BY clause (as

shown on the next slide), but to completely satisfy this query, the HAVING

clause will also be required to restrict the results from the GROUP BY clause,

this final result is shown in the slide on page 116.

COP 4710: Database Systems (Chapter 5) Page 115 Dr. Mark Llewellyn ©

Query: List the number of products in inventory

supplied by each vendor.

Query using the GROUP BY

clause.

COP 4710: Database Systems (Chapter 5) Page 116 Dr. Mark Llewellyn ©

Query: List the number of products in inventory

supplied by each vendor but only list the

products which average less than $10.

Query using the GROUP BY

clause with the HAVING clause

COP 4710: Database Systems (Chapter 5) Page 117 Dr. Mark Llewellyn ©

Query: List the total cost of products grouped by

v_code for those products with total cost greater

than $500 and arrange the results in

descending order of total cost.

Query using the GROUP BY

clause with the HAVING clause

and an aggregate functions.

COP 4710: Database Systems (Chapter 5) Page 118 Dr. Mark Llewellyn ©

Query: List the total cost of products grouped by

v_code for those products with total cost greater

than $500 and arrange the results in

descending order of total cost.

Query using the GROUP BY

clause with the HAVING clause

and an aggregate functions using

the column alias.

NOTE: Not all DBMS will allow a column alias to

be used in the HAVING and ORDER BY

clauses. Instead the column expression must

be used as shown in the previous slide.

